Calcul intégral.

Question 1 Parmi les propositions suivantes, lesquelles sont exactes.

/ 5

Soit
$$D=]0$$
; $1[\cup]1$; $+\infty[$ et $f:D\mapsto \mathbb{R}$ définie par $f(x)=\frac{1}{x\ln(x)}$.

Alors:

Sur]1; $+\infty$ [, une primitive F de f est: $F(x) = -\frac{1}{\ln^2(x)}$

f est continue sur]0; 1[

0}}(x)=+\infty" src="data:image/png;base64,

iVBORw0KGgoAAAANSUhEUgAAAF4AAAAqBAMAAADIT/GKAAAAAXNSR0IB2cksfwAAAB5QTFRF////wMDAhISEAAAAQkJCYWFh19fXoaGh7O... $data-latex= "\displaystyle\lim_{\stackrel} x\to 0}{x>0}{x>0}(x)=+\lim_{\stackrel} x\to 0}{x>0}{x>0}$

$$\int_{2}^{4} f(x) \, \mathrm{d}x = \ln(2)$$

f admet une primitive sur [0;1]

Question 2 Parmi les propositions suivantes, lesquelles sont exactes.

/5

Soit f la fonction définie sur $[-\pi\ ;\pi]$ par $f(x)=\frac{\pi+x}{2}$ si $x\in [-\pi\ ,0[$ et $f(x)=\frac{\pi-x}{2}$ si $x\in [0\ ,\pi].$ Alors:

La valeur moyenne de f sur $[-\pi; \pi]$ est $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$

$$\int_{-\pi}^{0} f(x) \, \mathrm{d}x = \int_{0}^{\pi} f(x) \, \mathrm{d}x$$

f est dérivable sur $[-\pi;\pi]$

La valeur moyenne de f sur $[-\pi; \pi]$ est $\frac{\pi}{4}$

f est continue sur $[-\pi; \pi]$

/ 5

Calcul intégral.

Question 3 Parmi les propositions suivantes, lesquelles sont exactes.

Soit $f(t) = \frac{t+2}{t+1}$ et $I = \int_0^1 f(t) dt$ on a:

 $I=1+\ln 2$

Pour tout $n \in \mathbb{N}^*$ et $k \in \{0; 1; 2; \dots; n-1\}$ on a $\frac{1}{n} f\left(\frac{k+1}{n}\right) \leqslant \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt \leqslant \frac{1}{n} f\left(\frac{k}{n}\right)$

 $I\geqslant 1$

$$I = \int_0^1 \left(1 + \frac{1}{t+1}\right) \, \mathrm{d}t$$

$$\left(\frac{1}{n}f\left(\frac{1}{n}\right) + \frac{1}{n}f\left(\frac{2}{n}\right) + \frac{1}{n}f\left(\frac{3}{n}\right) + \frac{1}{n}f\left(\frac{4}{n}\right) + \dots + \frac{1}{n}f\left(\frac{n}{n}\right)\right) \leqslant I$$

Question 4 Parmi les propositions suivantes, lesquelles sont exactes.

/5

Soit f la fonction définie sur \mathbb{R} par $f(x)=xe^{-2x}$.

Alors:

$$\int_{0}^{1} f(x) dx = \frac{1}{2} \left[f(0) - f(1) + \int_{0}^{1} e^{-2x} dx \right]$$

Pour tout $x \in \mathbb{R}$, on a $f'(x) + 2f(x) = e^{-2x}$

$$\int_{0}^{1} f(x) dx = \frac{1 - 2e^{-2}}{2}$$

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{2} \int_0^1 e^{-2x} \, \mathrm{d}x$$

$$\int_{0}^{1} -2e^{-2x} dx = e^{-2} - 1$$

Calcul intégral.

Question 5 Parmi les propositions suivantes, lesquelles sont exactes.

/ 5

Soit f une fonction continue sur \mathbb{R} , de valeur moyenne 4 sur $[-2\ ;\, 2].$

Alors on peut affirmer que :

Pour tout $x \in [-2; 2], f(x) \geqslant 0$

$$\int_{-2}^{2} f(x) \, \mathrm{d}x = 2$$

La valeur moyenne de $f^2\Big(x{\mapsto}(f(x))^2\Big)$ sur $[-2\ ;2]$ est 16

Il existe $a{\in}[-2\ ;2],\,f(a){=}4$

f n'est pas une fonction impaire